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1 Introduction

In this paper, we investigate the numerical solution of the boundary value problem
which represents the one dimensional time independent Schrödinger equation that has
the form:

q ′′(r) = [l(l + 1)/r2 + V (r) − k2]q(r), (1)

where the function W (r) = l(l + 1)/r2 + V (r) is called the effective potential and
satisfies W (x) → 0 as x → ∞, the quantity k2 is a real number denoting the energy,
the quantity l is a given integer representing the angular momentum, and V is a given
function denotes the potential.

The boundary conditions of this problem is given by

q(0) = 0 (2)

and a second boundary condition, for large values of r , determined by physical con-
siderations.

The above mentioned problem belongs to the category of the special second-order
initial or boundary value problems of the form:

q ′′(r) = f (r, q(r)), (3)

with a periodical and/or oscillatory. The main characteristic of this general category
of problems is that the system of ordinary differential equations of the form (3) are of
second order in which the first derivative q ′ does not appear explicitly.

In applied sciences (i.e., astronomy, astrophysics, quantum mechanics, quantum
chemistry, celestial mechanics, electronics, physical chemistry, chemical physics, …,
etc), many problems have their mathematical models of the form of Eq. (1) (see for
example [1–4]).

In this paper, we investigate a new methodology for the development of efficient
four-step Runge–Kutta type methods. We develop the numerical Runge–Kutta type
methods (i.e. methods with more than one stage) with vanished phase-lag and its
derivatives on each level of the Runge–Kutta type method, and study how the vanishing
of the phase-lag and its derivatives on each level of the method affects the efficiency
of the obtained numerical scheme and finally we investigate if the method is more
efficient than other methods where the vanishing of the phase-lag and its derivatives
is for the whole of the method and not on each stage.

The methods produced are very effective on any problem with periodic or oscillating
solutions or solution which contains the functions cos and sin or a combination of
them.

In this paper, we will obtain the coefficients of the proposed Runge–Kutta type
two-stage four-step method in order to have the highest possible algebraic order, the
phase-lag vanished on each stage of the method, the first and second derivatives of the
phase-lag vanished on each stage of the method as well.
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Fig. 1 Flowchart of the
presentation of the analysis of
the new proposed Runge–Kutta
type method

In order to determine the phase-lag and its first and second derivatives, we will
use the direct formula for the computation of the phase-lag for a 2 m-method as
in [25,28].

In Fig. 1, we present the flowchart of the presentation of the analysis of the new
proposed Runge–Kutta type method.

In order to prove the efficiency of the new scheme, we will compare the local
truncation error of the new produced method with other methods of the same form
(comparative error analysis), and study the stability analysis of the new obtained
method and finally we study the results obtained by the application of the new pro-
duced method to the resonance problem of the one-dimensional time independent
Schrödinger equation. This is one of the most difficult problems arising from the
one-dimensional Schrödinger equation.

The paper has the following form:
In Sect. 2, we present some bibliography on the subject. In Sect. 3, we present

the phase-lag analysis of symmetric 2k-methods. Then we develop the new hybrid
two-stage four-step method in Sect. 4. In Sect. 5, we develop the comparative error
analysis, and study the stability properties of the new obtained method in Sect. 6. In
Sect. 7, the numerical results are presented. Finally, we give remarks and conclusions
in Sect. 8.
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2 Bibliography relevant on the subject of the paper

For the numerical solution of the one-dimensional Schrödinger equation and related
problems much research has been don the last decades. The aim and scope of this
research was the construction of efficient, fast and reliable algorithms (see for example
[5–106]). In the following, we mention some bibliography:

• Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta–Nyström type have been obtained in [5–11].

• In [12–17] exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta–Nyström methods are constructed.

• Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [22–49].

• Symplectic integrators are investigated in [50–78].
• Exponentially and trigonometrically multistep methods have been produced in [79–

99].
• Nonlinear methods have been studied in [100,101]
• Review papers have been presented in [102–106]
• Special issues and Symposia in International Conferences have been developed on

this subject (see [107–110]).

3 Phase-lag analysis of symmetric 2 n-step methods

If we consider the initial value problem

q ′′ = f (x, q), (4)

then we can obtain the numerical solution by considering a multistep method with
p steps which can be applied over the equally spaced intervals {xi }p

i=0 ⊂ [a, b] and
h = |xi+1 − xi |, i = 0(1)p − 1.

We choose the case in which the method is symmetric, i.e.,

ai = ap−i , bi = bp−i , i = 0(1)
p

2
. (5)

If we apply a symmetric 2 p-step method, that is for i = −p(1)p, to the scalar test
equation

q ′′ = −w2 q, (6)

we obtain a difference equation of the form

Ap(v)qn+p + · · · + A1(v)qn+1 + A0(v)qn + A1(v)qn−1+ · · · + Ap(v)qn−p = 0,

(7)

where v = w h, h is the step length and A0(v), A1(v), . . . , Ap(v) are polynomials.
The characteristic equation (which is associated with (7)) is given by:

Ap(v) λp + · · · + A1(v) λ + A0(v) + A1(v) λ−1+ · · · + Ap(v) λ−p = 0 (8)
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Theorem 1 [25,28] The symmetric 2m-step method with characteristic equation
given by (8) has phase-lag order q and phase-lag constant c given by:

− c vq+2+O
(
vq+4

)
= 2Ap (v) cos (pv) + · · · + 2A j (v) cos ( jv)+ · · · + A0 (v)

2p2 Ap (v) + · · · + 2 j2 A j (v) + · · · + 2A1 (v)

(9)

Remark 1 The formula (9) is a direct method for the calculation of the phase-lag of
any symmetric 2 p-step method.

4 Development of the method

Let us consider the family of hybrid type symmetric four-step methods for the numer-
ical solution of problems of the form q ′′ = f (x, q):

q̂n+2 = −a0 qn+1 − 2 qn − a0 qn−1 − qn−2 + h2
(

b0 q ′′
n+1 + b1 q ′′

n + b0 q ′′
n−1

)

qn+2 − 2 qn+1 + 2 qn − 2 qn−1 + qn−2

= h2
[

b4
(
q̂ ′′

n+2 + q ′′
n−2

) + b3
(
q ′′

n+1 + q ′′
n−1

) + b2 q ′′
n

]
, (10)

where the coefficient bi , i = 0(1)4 are free parameters, h is the step size of the
integration , n is the number of steps, qn is the approximation of the solution on the
point xn, xn = x0 + n h and x0 is the initial value point.

4.1 First level of the hybrid method

Consider the first level of the above mentioned method:

qn+2+an qn+1 + 2 qn+a0 qn−1 + qn−2 = h2
(

b0 q ′′
n+1 + b1 q ′′

n + b0 q ′′
n−1

)
(11)

When we apply this to the scalar test Eq. (6), we get the difference Eq. (7) with p = 2
and A j (v) , j = 0, 1, 2 given by:

A2 (v) = 1, A1 (v) = a0 + v2 b0 A0 (v) = 2 + v2 b1 (12)

Requiring the above method to have the phase-lag and its first and second derivatives
to vanish, we obtain the following system of equations [using the formulae (9) (for
p = 2) and (12)]:
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Phase-Lag = 1

2

4 (cos (v))2 + 2a0 cos (v) + 2 cos (v) v2b0 + v2b1

4 + a0 + v2b0
= 0 (13)

First Derivative of the Phase-Lag = − F1(
4 + a0 + v2b0

)2 = 0 (14)

where

F1 = 16 cos (v) sin (v) + 4 cos (v) sin (v) a0 + 4 cos (v) sin (v) v2b0 + 4 sin (v) a0

+ sin (v) a0
2 + 2 sin (v) a0v

2b0 + 4 sin (v) v2b0 + sin (v) v4b0
2

− 8 cos (v) v b0 − 4 v b1 − v b1a0 + 4 v b0 (cos (v))2

Second Derivative of the Phase-Lag = − F2(
4 + a0 + v2b0

)3 = 0 (15)

where

F2 = − 64 − 16 v3b0
2 cos (v) sin (v) + 16 (cos (v))2 a0v

2b0 + 16 cos (v) a0v
2b0

+ 3 cos (v) a0
2v2b0 + 3 cos (v) a0v

4b0
2 + 16 sin (v) vb0a0

+ 3 b1a0v
2b0 − 8 a0v

2b0 − 32 a0 − 16 b1 − 8 a0b1 − 4 v4b0
2

− 4 a0
2 − b1a0

2 + 16 b0 (cos (v))2 − 16 vb0 cos (v) sin (v) a0 + 16 cos (v) a0

+ 64 (cos (v))2 a0 + 8 (cos (v))2 a0
2 + 8 cos (v) a0

2 + cos (v) a0
3 − 32 v2b0

+ 64 (cos (v))2 v2b0+8 cos (v) v4b0
2+8 (cos (v))2 v4b0

2 + 4 b0 (cos (v))2 a0

+ cos (v) v6b0
3 + 16 sin (v) v3b0

2 − 8 cos (v) b0a0 + 12 b1v
2b0

+ 24 cos (v) b0
2v2 − 12 v2b0

2 (cos (v))2 + 64 sin (v) vb0 − 32 cos (v) b0

+ 128 (cos (v))2 + 16 cos (v) v2b0 − 64 vb0 cos (v) sin (v)

The coefficients of the first level of the proposed hybrid four-step methods are defined
by the solution of the above system of Eqs. (13)–(15):

a0 = − v2 sin (3 v) +3 v2 sin (v)+7 cos (v) v − 3 v cos (3 v) +3 sin (v) +3 sin (3 v)

−3 v + v cos (2 v) − 3 sin (2 v)

b0 = cos (v) v + 3 v cos (3 v) + v2 sin (3 v) − 3 v2 sin (v) − sin (v) − sin (3 v)

−3 v3 + v3 cos (2 v) − 3 v2 sin (2 v)

b1 = 2 sin (2 v) + sin (4 v) − 3 v − v cos (4 v) − 4 v cos (2 v)

−3 v3 + v3 cos (2 v) − 3 v2 sin (2 v)
(16)

The formulae given by (16) are subject to heavy cancellations for some values of |w|.
In this case the following Taylor series expansions should be used:
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a0 = −2 + 3

80
v6 − 47

10080
v8 + 47

80640
v10 − 547

7603200
v12 + 503207

96864768000
v14

− 870781

871782912000
v16+ 194612701

3556874280960000
v18− 5286219803

516070122946560000
v20

+ 444499768241

416296565843558400000
v22 − 3306991067063

68938711303693271040000
v24

+ 357983689303064647

16938241367317436694528000000
v26

+ 816598959203681

6159360497206340616192000000
v28 + · · ·

b0 = 7

6
− 9

40
v2 − 1

10080
v4 + 3259

1814400
v6 − 9197

79833600
v8 + 14763719

435891456000
v10

− 5295347

5230697472000
v12+ 37189991

108883906560000
v14− 266119714361

8515157028618240000
v16

+ 3176521552291

5620003638888038400000
v18 − 137264450201

172174603655577600000
v20

− 86602787462431411

2823040227886239449088000000
v22

− 88184994365249323

8711095560334681728614400000
v24

+ 4120240657774281511

35367047974958807818174464000000
v26 + · · ·

b1 = −1

3
+ 9

20
v2 − 1133

5040
v4 + 47651

907200
v6 − 280939

39916800
v8 + 192066541

217945728000
v10

− 4516411

47551795200
v12 + 2077986997

205204285440000
v14 − 1007668088177

851515702861824000
v16

+ 312947531382179

2810001819444019200000
v18 − 245257668582937

17234677825923317760000
v20

+ 1883749820599364161

1411520113943119724544000000
v22

− 23116629052873612297

152444172305856930250752000000
v24

+ 29442050268474159397

1607593089770854900826112000000
v26 · · · (17)

Figure 2 shows the behavior of the coefficients a0, b0 and b1.
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Fig. 2 Behavior of the coefficients of the method given by (16) for several values of v = w h

4.2 Second Level of the Method

We consider now the second level of the method (10):

qn+2 − 2 qn+1 + 2 qn − 2 qn−1 + qn−2

= h2
(

b4 q ′′
n+2 + b3 q ′′

n+1 + b2 q ′′
n + b3 q ′′

n−1 + b4 q ′′
n−2

)
(18)

If we apply the second level (18) to the scalar test Eq. (6), the difference Eq. (7) with
p = 2 and A j (v), j = 0, 1, 2 given by:

A2 (v) = 1 + v2 b4, A1 (v) = −2 + v2 b3 A0 (v) = 2 + v2 b2 (19)

is produced.
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If now we require the above second level of the method (10) to have the phase-lag
and its first and second derivatives to vanish, the following system of equations is
obtained [using the formulae (9) (for p = 2) and (19)]:

Phase-Lag

= 2 (cos (v))2 v2b4+2 (cos (v))2 + cos (v) v2b3−2 cos (v)−2 v2b4+v2b2

2+4 v2b4+v2b3
= 0 (20)

First Derivative of the Phase-Lag = − F3(
2 + 4 v2b4 + v2b3

)2 = 0 (21)

where

F3 = 24 cos (v) v2b4 sin (v) + 16 cos (v) v4b4
2 sin (v) + 4 cos (v) sin (v) v2b3

+ 4 sin (v) v4b3b4 + 8 (cos (v))2 v b4 − 8 cos (v) v b3 + sin (v) v4b3
2

− 8 sin (v) v2b4+4 v (cos (v))2 b3 − 16 v cos (v) b4+8 cos (v) sin (v) +4 v b4

− 2 v b2 + 4 cos (v) v4b4 sin (v) b3 − 4 sin (v)

Second Derivative of the Phase-Lag = F4(
2 + 4 v2b4 + v2b3

)3 = 0 (22)

where

F4 = 16 + 80 v2b4 + 16 v2b3 + 32 cos (v) v4b4
2 + 32 cos (v) v2b4

+ 16 cos (v) b3 − 16 (cos (v))2 b4 + 64 v6b4
3 − 8 b4 + 4 b2 − 24 v2b2b4

− 6 v2b2b3 + 12 v2b4b3 + 48 v4b3b4 − 32 sin (v) vb3

− 192 v2 cos (v) b4
2 − 64v sin (v) b4+12 v2 (cos (v))2 b3

2−128 sin (v) b4
2v3

+ 96 (cos (v))2 v2b4
2 − 24 cos (v) v2b3

2 − cos (v) v6b3
3 − 16 sin (v) v3b3

2

− 256 (cos (v))2 v4b4
2 − 128 (cos (v))2 v6b4

3 − 2 cos (v) v4b3
2

− 32 (cos (v))2 v2b3 − 8 (cos (v))2 v4b3
2 − 32 (cos (v))2

+ 64 cos (v) vb4 sin (v) + 96 cos (v) v3b4 sin (v) b3 + 4 v6b4b3
2

+ 32 v6b4
2b3 − 96 sin (v) v3b3b4 − 8 cos (v) v6b3

2b4 − 16 cos (v) v6b3b4
2

− 8 (cos (v))2 v6b4b3
2 − 64 (cos (v))2 v6b4

2b3

− 96 (cos (v))2 v4b4b3 + 16 cos (v) sin (v) b3
2v3 + 128 cos (v) v3b4

2 sin (v)

+ 32 v cos (v) sin (v) b3 − 144 cos (v) v2b3b4 + 72 (cos (v))2 v2b4b3

− 8 (cos (v))2 b3 + 32 cos (v) b4 + 48 v2b4
2 + 4 v4b3

2 + 128 v4b4
2

+ 8 cos (v) + 4 cos (v) v2b3 − 160 (cos (v))2 v2b4

The coefficients of the second level of the proposed hybrid four-step methods are
defined by the solution of the above system of Eqs. (20)–(22):

b2 = F5

v4 sin (3 v) − 3 v4 sin (v)
b3 = F6

v4 sin (3 v) − 3 v4 sin (v)

b4 = F7

v4 sin (3 v) − 3 v4 sin (v)
(23)
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where

F5 = −18 v − 2 v2 sin (3 v) + 6 v2 sin (v) − 4 v cos (2 v) + 15 sin (3 v)

+ 12 sin (v) + 28 cos (v) v − 3 v cos (3 v) − v cos (5 v) − 2 v cos (4 v)

− 6 sin (4 v) − 24 sin (2 v) + 3 sin (5 v)

F6 = 16 cos (v) v − 12 sin (2 v) − 6 sin (4 v) + 2 v2 sin (3 v) − 6 v2 sin (v)

− 12 v + 4 v cos (4 v) − 8 v cos (2 v) + 12 sin (3 v) + 12 sin (v)

F7 = −v2 sin (3 v) + 3 v2 sin (v) + 7 cos (v) v − 6 v + 2 v cos (2 v) − 3 v cos (3 v)

+ 3 sin (v) + 3 sin (3 v) − 6 sin (2 v)

The formulae given by (23) are subject to heavy cancellations for some values of |w|.
In this case the following Taylor series expansions should be used:

b2 = 7

60
+ 19

336
v2 − 1093

100800
v4 + 17749

9979200
v6 + 698293

12108096000
v8

+ 3165689

174356582400
v10 + 2072867219

889218570240000
v12

+ 5662897453

17739910476288000
v14 + 2772391899877

66904805224857600000
v16

+ 12311866905617

2350183339898634240000
v18 + 30464861505489379

47050670464770657484800000
v20

+ 13095830186993

166649364101903155200000
v22 · · ·

b3 = 13

15
− 19

504
v2 + 103

25200
v4 + 4891

9979200
v6 + 2221963

27243216000
v8 + 1044143

87178291200
v10

+ 52839173

31757806080000
v12 + 47149992299

212878925715456000
v14 + 477390285503

16726201306214400000
v16

+ 46337692108619

12926008369442488320000
v18 + 15562903075200133

35288002848577993113600000
v20

+ 215105978014253

4032914611266056355840000
v22+ 35139511603773340037

5526101246087313721589760000000
v24+ · · ·

b4 = 3

40
+ 19

2016
v2 + 269

201600
v4 + 1273

6652800
v6 + 5849539

217945728000
v8 + 1273619

348713164800
v10

+ 22006867

45600952320000
v12 + 3306233257

53219731428864000
v14 + 1046327020939

133809610449715200000
v16

+ 5546864378273

5744892608641105920000
v18 + 33108571855055119

282304022788623944908800000
v20

+ 80923485190841

5761306587522937651200000
v22 + · · · (24)

Figure 3 shows the behavior of the coefficients b2, b3 and b4.
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Fig. 3 Behavior of the coefficients of the new proposed method given by (23) for several values of v = w h

Figure 4 shows the flowchart of the construction of the new proposed method.
The combination of the above two mentioned levels leads to the proposed method

(10) with the coefficients given by (16), (17), (23) and (24).
The local truncation error of this new proposed method (mentioned as H ybMeth I )

is given by:

LTEH ybMeth = 751 h8

302400

(
q(8)

n +3 w2 q(6)
n +3w4 q(4)

n +w6 q(2)
n

)
+O

(
h10

)
(25)

where q( j)
n is the j th derivative of qn .

5 Comparative error analysis

We will study the following methods:
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Fig. 4 Flowchart of the
development of the new
proposed method

5.1 Classical method (i.e. the method (10) with constant coefficients)

LTECL = − 751 h8

302400
p(8)

n + O
(

h10
)

(26)

5.2 The hybrid method with vanished phase-lag and its first derivative in each level
developed in [42]

LTEMeth I = 751 h8

302400

(
q(8)

n + 2w2q(6)
n + w4q(4)

n

)
+ O

(
h10

)
(27)

5.3 The new proposed Runge–Kutta type method with vanished phase-lag and its
first and second derivatives in each level developed in section 3

LTEMeth II = − 751h8

302400

(
q(8)

n + 3w2q(6)
n + 3w4q(4)

n + w6q(2)
n

)
+ O

(
h10

)
(28)

For the Error Analysis we follow the Flowchart mentioned in the Fig. 5.
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Fig. 5 Flowchart for the
comparative error analysis

q x f x q x

f x g x G

cg x V x V g

cV G E

Calculation of , 0,1,2,jq x j

Calculation of LTE

We use the algorithm described on the flowchart together with the formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(3)
n =

(
d

dx
g (x)

)
q (x) + (g (x) + G)

d

dx
q (x)

q(4)
n =

(
d2

dx2 g (x)

)
q (x) + 2

(
d

dx
g (x)

)
d

dx
q (x)

+ (g (x) + G)2 q (x)

q(5)
n =

(
d3

dx3 g (x)

)
q (x) + 3

(
d2

dx2 g (x)

)
d

dx
q (x)

+ 4 (g (x) + G) q (x)
d

dx
g (x) + (g (x) + G)2 d

dx
q (x)

q(6)
n =

(
d4

dx4 g (x)

)
q (x) + 4

(
d3

dx3 g (x)

)
d

dx
q (x)

+ 7 (g (x) + G) q (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

q (x)

+ 6 (g (x) + G)

(
d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)3 q (x)
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q(7)
n =

(
d5

dx5
g (x)

)
q (x) + 5

(
d4

dx4 g (x)

)
d

dx
q (x)

+ 11 (g (x) + G) q (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
q (x)

d2

dx2 g (x)

+ 13 (g (x) + G)

(
d

dx
q (x)

)
d2

dx2 g (x) + 10

(
d

dx
g (x)

)2 d

dx
q (x)

+ 9 (g (x) + G)2 q (x)
d

dx
g (x) + (g (x) + G)3 d

dx
q (x)

q(8)
n =

(
d6

dx6 g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 16 (g (x) + G) q (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
q (x)

d3

dx3 g (x)

+ 24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3 g (x) + 15

(
d2

dx2 g (x)

)2

q (x)

+ 48

(
d

dx
g (x)

) (
d

dx
q (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 q (x)
d2

dx2 g (x)

+ 28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)4 q (x) · · ·

Based on the above we produce the expressions of the Local Truncation Errors.
Two cases in terms of the value of E are studied during the investigation of the

Local Truncation Errors:

• The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

• G � 0 or G � 0. Then |G| is a large number.

Based on the analysis presented above, we have the following asymptotic expan-
sions of the Local Truncation Errors:

5.4 Classical method

LTECL = h8
(

751

302400
q (x) G4 + · · ·

)
+ O

(
h10

)
(29)
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5.5 The hybrid method with vanished phase-lag and its first derivative in each level
developed in [42]

LTEMeth I = h8
[(

751

33600

(
d2

dx2 g (x)

)
q (x) + 751

151200

(
d

dx
g (x)

)
d

dx
q (x)

+ 751

302400
(g (x))2 q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(30)

5.6 The new proposed Runge–Kutta type method with vanished phase-lag and its
first and second derivatives in each level developed in section 3

LTEMeth II = h8
[(

751

75600

(
d2

dx2 g (x)

)
q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(31)

From the above equations we have the following theorem:

Theorem 2 For the Classical Runge–Kutta type Four-Step Method the error increases
as the fourth power of G. For the method with vanished phase-lag and its first derivative
in each level which developed in [42] , the error increases as the second power of G.
Finally, for the the method with vanished phase-lag and its first and second derivatives
in each level developed in Sect. 3, the error increases as the second power of G. So,
for the numerical solution of the time independent radial Schrödinger equation the
Method with Vanished Phase-Lag and its First Derivatives in each level and the New
Proposed Method with Vanished Phase-Lag and its its First and Second Derivatives
in each level are the most efficient and they have the same approximately behavior,
from theoretical point of view, especially for large values of |G| = |Vc − E |.

6 Stability analysis

For the Stability analysis is based on the Flowchart mentioned in the Fig. 6.
The analysis mentioned on the flowchart we will applied as follows:

• We will study the stability of the first layer of the new proposed Runge–Kutta type
method

• We will study the stability of the second layer of the new proposed Runge–Kutta
type method

• We will study the stability of the new proposed Runge–Kutta type two layer method.

6.1 Stability analysis for the first layer of the new proposed Runge–Kutta type
method

Let us apply the first layer of the new proposed Runge–Kutta type method (11) with
the coefficients given by (16) to the scalar test equation:

q ′′ = −z2 q. (32)
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Fig. 6 Flowchart for the
stability analysis

Application of the method to 2q q
w

Difference Equation
2

0
1

, ,i n i n i n
i

A s v q q A s v q

Characteristic Equation
2

0
1

, ,i i
i

i

A s v A s v

Development of the s v plane for the method

This leads to the following difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (33)

where

A2 (s, v) = 1, A1 (s, v) = −2
F8

v2
(− (cos (v))2 v + 3 sin (v) cos (v) + 2 v

)

A0 (s, v) = −2
F9

v2 (v cos (2 v) − 3 sin (2 v) − 3 v)
(34)

where

F8 = sin (v) (cos (v))2 s2v2 − sin (v) (cos (v))2 v4 + 3 (cos (v))3 s2v

− 3 (cos (v))3 v3 − sin (v) (cos (v))2 s2 + 3 sin (v) (cos (v))2 v2 − sin (v) s2v2

+ sin (v) v4 − 2 cos (v) s2v + 4 cos (v) v3

F9 = (cos (2 v))2 s2v − cos (2 v) sin (2 v) s2 + 2 cos (2 v) s2v

− cos (2 v) v3 − sin (2 v) s2 + 3 sin (2 v) v2 + s2v + 3 v3

and s = z h.

Remark 2 the frequency of the scalar test Eq. (6), w, is not equal with the frequency
of the scalar test Eq. (32), z, i.e. z 	= w.
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The corresponding characteristic equation is given by:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (35)

Definition 1 (see [18]) A symmetric 2 k-step method with the characteristic equation
given by (8) is said to have an interval of periodicity

(
0, v2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, · · · (36)

where ζ(s) is a real function of z h and s = z h.

Definition 2 (see [18]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 7 we present the s − v plane for the first layer of the Runge–Kutta type
method developed in this paper. A shadowed area denotes the s − v region where the
method is stable, while a white area denotes the region where the method is unstable.

6.2 Stability analysis for the second layer of the new proposed Runge–Kutta type
method

We apply the second layer of the new proposed Runge–Kutta type method (18) with
the coefficients given by (23) to the scalar test Eq. (32). This leads to the difference
Eq. (33) with:

A2 (s, v) = − F10

sin (v) (cos (v) + 1) v4 , A1 (s, v) = −2
F11

sin (v) (cos (v) + 1) v4

A0 (s, v) = 2
F12

sin (v) (cos (v) + 1) v4 (37)

where

F10 = sin (v) cos (v) s2v2 − sin (v) cos (v) v4

+ sin (v) s2v2 − sin (v) v4 + 3 s2v (cos (v))2

− 3 sin (v) cos (v) s2 + 2 cos (v) s2v − 2 s2v

F11 = − sin (v) cos (v) s2v2 + sin (v) cos (v) v4

− 4 (cos (v))3 s2v + 6 sin (v) (cos (v))2 s2

− sin (v) s2v2 + sin (v) v4 − 4 s2v (cos (v))2 + 2 cos (v) s2v

1 Where S is a set of distinct points
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Fig. 7 s − v plane of the first layer of the new Runge–Kutta type obtained method

F12 = −2 s2v (cos (v))4 + 6 sin (v) (cos (v))3 s2

− sin (v) cos (v) s2v2 + sin (v) cos (v) v4 − 4 (cos (v))3 s2v

− sin (v) s2v2 + sin (v) v4 − 3 s2v (cos (v))2

+ 3 sin (v) cos (v) s2 − 2 cos (v) s2v + 2 s2v

and s = z h.
In Fig. 8 we present the s − v plane for the second layer of the Runge–Kutta type

method developed in this paper. A shadowed area denotes the s − v region where the
method is stable, while a white area denotes the region where the method is unstable.

6.3 Stability analysis for the new proposed Runge–Kutta type method

Let us apply the new obtained method (10) with the coefficients given by (16), (17),
(23) and (24) to the scalar test Eq. (32). This leads to the difference Eq. (33) with:

A2 (s, v) = 1, A1 (s, v) = 2
F13

F14
A0 (s, v) = −2

F15

F14
(38)
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Fig. 8 s − v plane of the second layer of the new Runge–Kutta type obtained method

where

F13 = −2 (cos (v))3 s2v6 − 9 (cos (v))5 s2v2 + cos (v) s2v6

− 4 sin (v) s2v5 − 5 (cos (v))2 s4v2 − 2 (cos (v))2 s2v6

− cos (v) s4v4 + 7 cos (v) s4v2 + (cos (v))4 s2v6 + (cos (v))5 s2v6

− sin (v) (cos (v))2 v7 + 13 (cos (v))5 s4v2 − 19 (cos (v))3 s4v2

− 10 cos (v) s2v4 + 2 (cos (v))2 s4v4 − (cos (v))4 s4v4

− sin (v) (cos (v))3 v7 + 9 (cos (v))3 s2v2

− 11 (cos (v))5 s2v4 + 2 sin (v) s4v3 − 2 (cos (v))4 s2v4

+ 20 (cos (v))3 s2v4 + 2 (cos (v))3 s4v4 + 7 (cos (v))4 s4v2

− (cos (v))5 s4v4 + 2 sin (v) cos (v) v7 + 6 sin (v) (cos (v))4 s4v3

− 6 sin (v) (cos (v))4 s2v5 + 5 sin (v) (cos (v))3 s4v3

− 4 sin (v) (cos (v))3 s2v5 − 12 sin (v) (cos (v))4 s4v

− 7 sin (v) (cos (v))2 s4v3 + 10 sin (v) (cos (v))2 s2v5

− 2 sin (v) (cos (v))3 s4v − 6 sin (v) (cos (v))3 s2v3

+ 8 sin (v) (cos (v))2 s4v − 4 sin (v) cos (v) s4v3
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+ 4 sin (v) cos (v) s2v5 − 3 (cos (v))3 v6 + 3 (cos (v))2 v6

+ 3 (cos (v))3 s4 − 3 (cos (v))4 v6 − 3 (cos (v))5 s4

+ 3 v6 cos (v) − s4v4 + s2v6 + 2 sin (v) v7

F14 =
(

sin (v) (cos (v))3 v + 3 (cos (v))4

+ sin (v) (cos (v))2 v + 3 (cos (v))3 − 2 sin (v) cos (v) v

− 3 (cos (v))2 − 2 sin (v) v − 3 cos (v)
)
v6

F15 = 2 (cos (v))6 s2v4 − sin (v) (cos (v))2 v7 + 6 (cos (v))5 s4v2

− 2 (cos (v))3 s4v2 − sin (v) (cos (v))3 v7 + 4 (cos (v))5 s2v4

− 4 (cos (v))4 s2v4 − 8 (cos (v))3 s2v4 − 6 (cos (v))4 s4v2

+ 2 sin (v) cos (v) v7 − 6 (cos (v))6 s4 + 6 (cos (v))4 s4

+ 2 sin (v) (cos (v))4 s4v3 − 4 sin (v) (cos (v))4 s4v

+ 4 sin (v) (cos (v))3 s4v + 12 sin (v) (cos (v))3 s2v3

− 3 (cos (v))3 v6 + 3 (cos (v))2 v6 − 3 (cos (v))4 v6

+ 3 v6 cos (v) + 2 sin (v) (cos (v))5 s4v3 − 12 sin (v) (cos (v))5 s4v

− 12 sin (v) (cos (v))5 s2v3 − 12 sin (v) (cos (v))4 s2v3

+ 18 (cos (v))4 s2v2 − 18 (cos (v))6 s2v2

+ 8 (cos (v))6 s4v2 + 2 sin (v) v7

and s = z h.
In Fig. 9 we present the s − v plane for the Runge–Kutta type method developed

in this paper. A shadowed area denotes the s − v region where the method is stable,
while a white area denotes the region where the method is unstable.

Remark 3 For the solution of the Schrödinger equation the frequency of the phase
fitting is equal to the frequency of the scalar test equation. So, for this case of problems
it is necessary to observe the surroundings of the first diagonal of the s − v plane.

We study now the case where the frequency of the scalar test equation is equal with
the frequency of phase fitting, i.e. in the case that s = v (i.e. see the surroundings of
the first diagonal of the s − v plane). Based on this study we extract the result that the
interval of periodicity of the new method developed in Sect. 3 is equal to: (0, 6.05).

From the above analysis we have the following theorem:

Theorem 3 The method developed in Sect. 3:

• is of sixth algebraic order,
• has the phase-lag and its first and second derivatives equal to zero on the first level

of the hybrid method
• has the phase-lag and its first and second derivatives equal to zero on the second

level of the hybrid method
• has an interval of periodicity equals to: (0, 6.05) in the case where the frequency

of the scalar test equation is equal with the frequency of phase fitting.
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Fig. 9 s − v plane of the new Runge–Kutta type obtained method

7 Numerical results

In order to study the effectiveness of the new obtained method, the numerical solution
of the the radial time-independent Schrödinger equation (1) is used

Since the new proposed method is a frequency dependent method, it is necessary the
value of parameter w to be defined. This definition is necessary in order the application
of the new obtained method to the radial Schrödinger equation to be possible. Based
on (1), the parameter w is given by (for the case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (39)

where V (r) is the potential and E is the energy.

7.1 Woods–Saxon potential

In order to use the numerical solution of the time-independent Schrödinger equation
(1), a definition of the potential is needed. For the present numerical tests we will use
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Fig. 10 The Woods–Saxon potential

the well known Woods–Saxon potential. We can write this potential as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (40)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 10.
There are several methodologies in order to define the frequency w. One well known

(see for details [105]), which is applied to some potentials, such as the Woods–Saxon
potential, consists from the determination of some critical points, which are defined
from the investigation of the appropriate potential.

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1,79]):

w =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(41)

For example, in the point of the integration region r = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.
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7.2 Radial Schrödinger equation: the resonance problem

For the purpose of this application, let consider the numerical solution of the radial
time independent Schrödinger equation (1) using as potential the known case of the
Woods–Saxon potential (40). This is a problem with infinite interval of integration.
This has to approximated by a finite one. We take the integration interval r ∈ [0, 15]
for the purposes of our numerical experiments. We consider Eq. (1) in a rather large
domain of energies, i.e., E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (42)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.
Thus, the solution of Eq. (1) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(43)

where δl is the phase shift that may be calculated from the formula

tan δl = q (r2) S (r1) − q (r1) S (r2)

q (r1) C (r1) − q (r2) C (r2)
(44)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
q j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain q0. The values qi , i = 1(1)3 are obtained by using high order Runge–Kutta–
Nyström methods (see [111,112]). With these starting values, we evaluate at r2 of the
asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (45)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance
problem using:
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• The eighth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT8.

• The tenth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT10.

• The twelfth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT12.

• The fourth algebraic order method of Chawla and Rao [24] with minimal phase-lag,
which is indicated as Method MCR4

• The exponentially-fitted method of Raptis and Allison [80], which is indicated as
Method MRA

• The hybrid sixth algebraic order method developed by Chawla and Rao [23] with
minimal phase-lag, which is indicated as Method MCR6

• The classical form of the sixth algebraic order four-step method developed in Sect. 4,
which is indicated as Method NMCL.2

• The four-step method of sixth algebraic order with vanished phase-lag and its first
derivative in each level (obtained in [42]), which is indicated as Method HYB-
PLDEA

• The four-step method of sixth algebraic order with vanished phase-lag and its first
and second derivatives in each level (obtained in Sect. 4), which is indicated as
Method RKTPLDDEA.

The numerically calculated eigenenergies are compared with reference values.3 In
Figs. 11 and 12, we present the maximum absolute error Errmax = |log10 (Err) |
where

Err = |Ecalculated − Eaccurate| (46)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

In this paper we presented a new methodology for the development of four-step hybrid
type methods of sixth algebraic order with vanished phase-lag and its derivatives. This
new methodology is based on the vanishing of the phase-lag and its derivatives in each
level of the hybrid method. We have also investigated the influencing of the vanishing of
the phase-lag and its first derivative on the efficiency of the above mentioned methods
for the numerical solution of the radial Schrödinger equation and related problems.
Based on the the above, a two-stage four-step sixth algebraic order methods with
vanished phase-lag and its first derivative in each level was obtained. This new method
is very efficient on any problem with oscillating solutions or problems with solutions
contain the functions cos and sin or any combination of them.

From the results presented above, we can make the following remarks:

2 With the term classical we mean the method of Sect. 4 with constant coefficients
3 The reference values are computed using the well known two-step method of Chawla and Rao [23] with
small step size for the integration
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Fig. 11 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E2 =
341.495874. The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy
(digits) is <0

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao [24] with minimal phase-lag, which is
indicated as Method MCR4. Both the above mentioned methods are more efficient
than the exponentially-fitted method of Raptis and Allison [80], which is indicated
as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[19], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao [24] with minimal phase-lag, which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [19], which is indicated as
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Fig. 12 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E3 =
989.701916. The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy
(digits) is <0

Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao [23] with minimal phase-
lag, which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[19], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [19], which is indicated as
Method QT10

4. The hybrid four-step two-stage sixth algebraic order method with vanished phase-
lag and its first derivative in each level of the method (obtained in [42]), which
is indicated as Method HYBPLDEA is the more efficient than all the above
mentioned methods.

5. The four-step method of sixth algebraic order with vanished phase-lag and its first
and second derivatives in each level (obtained in Sect. 4), which is indicated as
Method RKTPLDDEA, is the most efficient one.
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All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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